Tuesday, December 14, 2021

2. 1 . से शुरू होने वाली लगातार संख्याओं को जोड़ना

 


2. 1 . से शुरू होने वाली लगातार संख्याओं को जोड़ना

   1, 2, 3, 4, 5, 6, 7, 8 और 9 जैसे क्रमिक संख्याओं के समूह को जोड़ने की समस्या पर विचार करें। आप उनका योग कैसे ज्ञात करेंगे?

यह समूह निश्चित रूप से सामान्य तरीके से जोड़ने के लिए काफी आसान है।

लेकिन अगर आप वास्तव में चतुर हैं तो आप देख सकते हैं कि पहली संख्या, 1, अंतिम संख्या में जोड़ा गया, 9, योग 10 और दूसरी संख्या, 2, साथ ही अंतिम संख्या के आगे, 8, भी 10 का योग है।

वास्तव में, दोनों सिरों से शुरू करके और जोड़ों को जोड़ने पर, प्रत्येक स्थिति में कुल 10 है। हम पाते हैं कि चार जोड़े हैं, जिनमें से प्रत्येक में 10 जोड़ा जा रहा है; संख्या 5 के लिए कोई युग्म नहीं है।

इस प्रकार 4 x 10 = 40; 40 + 5 = 45

एक कदम और आगे बढ़ते हुए, हम एक पंक्ति में जितनी चाहें उतनी संख्याओं का योग ज्ञात करने के लिए एक विधि विकसित कर सकते हैं

 एक कदम और आगे बढ़ते हुए, हम एक पंक्ति में जितनी चाहें उतनी संख्याओं का योग ज्ञात करने के लिए एक विधि विकसित कर सकते हैं

                     नियम: (समूह में संख्याओं की संख्या को उनकी संख्या से एक से अधिक गुणा करें, और 2 से विभाजित करें)

एक उदाहरण के रूप में, मान लीजिए कि हमें 1 से 99 तक की सभी संख्याओं का योग ज्ञात करने के लिए कहा गया है। इस श्रृंखला में 99 इंटरजर्स हैं: इससे एक अधिक 100 है। इस प्रकार

99 X 100 = 9,900

9,900/2 = 4,950 उत्तर

अतः 1 से 99 तक की सभी संख्याओं का योग 4,950 है।

No comments:

Post a Comment

MY GOOGLE SITE